Принципы построения автогенераторов

Классификация генераторов

Генератор — это устройство, преобразующее энергию источника  постоянного тока в энергию электромагнитных колебаний с определенными параметрами.

Основными параметрами колебаний являются: амплитуда, частота и форма.

Основным требованием, предъявляемым к генераторам является устойчивость его работы при воздействии на него дестабилизирующих факторов, т. е. стабильность параметров генерируемых колебаний.

Генераторы широко применяются в технике связи. Они используются при формировании тестовых сигналов, сигналов синхронизации, служебных сигналов, опорных колебаний и т. д.

Условное графическое изображение генераторов приведено на рисунке 1.

Рисунок 1 - Условное графическое обозначение генераторов: а) гармонических колебаний, б) последовательности прямоугольных импульсов, в) последовательности пилообразных импульсов.

Классификация генераторов приведена на рисунке 2.

Электрическими являются генераторы, непосредственно преобразующие энергию источника постоянного тока в энергию колебаний.

Электромеханическими являются генераторы, в которых частота генерируемых колебаний задается частотой механических колебаний некоторых материалов (кварцевой пластины).

В генераторах с внутренним возбуждением или с самовозбуждением колебания формируются за счет внутреннего источника питания.

Рисунок 2 - Классификация генераторов

В генераторах с внешним возбуждением формирование колебаний осуществляется из поступающего на его вход другого колебания (умножение и деление частоты).

Релаксационные генераторы или мультивибраторы формируют колебания не гармонической формы (последовательности прямоугольных, треугольных, пилообразных, колокообразных и т. д. импульсов).

Гармонические или квазигармонические генераторы формируют колебания гармонической формы.

В RC-генераторах в качестве избирательной цепи используются RC-фильтры.

В LC-генераторах  в качестве избирательной цепи используется параллельный колебательный контур.

В двухточечных LC-генераторах колебательный контур подключается к усилительному элементу двумя точками, а в трехточечных LC-автогенераторах ? тремя точками.

Обобщенная структурная схема гармонического автогенератора

Построим обобщенную структурную схему гармонического автогенератора. Поскольку это автогенератор, то он должен иметь внутренний источник питания (ИП) Для формирования гармонических колебаний генератор должен содержать цепь, в которой способны возникнуть колебания. Такой цепью является колебательный контур, который также будет выполнять функции избирательной цепи (ИЦ). Избирательная цепь определяет частоту генерируемых колебаний и их форму. С точки зрения возникновения колебаний колебательного контура достаточно, но колебательный контур является пассивной цепью, а следовательно обладает положительным активным сопротивлением Rиц. При наличии этого сопротивления, а также сопротивления нагрузки Rн, в которую подаются колебания, формируемые генератором колебания будут затухающими. Поэтому в цепь автогенератора необходимо включить элемент, обладающий отрицательным активным сопротивлением, как известно, элемент обладающий отрицательным активным сопротивлением является источником переменного тока, а следовательно является активным (усилительным) элементом (УЭ). Сопротивление усилительного элемента Rуэ должно полностью компенсировать все потери энергии в пассивных цепях генератора и нагрузке. Также в состав автогенератора необходимо включить цепь, с помощью которой часть колебаний с выхода генератора будет поступать в усилительный элемент для компенсации потерь, т. е. необходима цепь обратной связи (ОС). Данная цепь также является пассивной и обладает положительным активным сопротивлением Rос. Таким образом, получаем обобщенную структурную схему гармонического автогенератора (рисунок 3).

Рисунок 3 - Обобщенная структурная схема гармонического автогенератора

В стационарном режиме работы автогенератора положительное активное сопротивление пассивных элементов генератора и нагрузки должно полностью компенсироваться отрицательным сопротивлением усилительного элемента, т. е.

Rиц+Rос+RнRуэ=0                                                                    (1)

 

Процесс возбуждения колебаний в автогенераторе

Рассмотрим процесс возбуждения колебаний в автогенераторе (рисунок 3). При включении источника питания в цепях автогенератора наблюдаются флуктуации тока (флуктуационный шум). Спектр этого шума содержит составляющие на всех частотах. Из этого спектра с помощью избирательной цепи выделяется составляющая на частоте генерации fг. Полученное колебание на выходе ИЦ поступает по цепи обратной связи в усилительный элемент, где осуществляется усиление колебания, которое поступает опять в ИЦ и т. д. Амплитуда колебаний возрастает до определенного момента, после чего она стабилизируется, а также стабилизируются частота и форма колебаний. Во время работы автогенератора выделяют два режима работы: переходной и стационарный. Переходной режим работы генератора длится с момента включения генератора и до момента стабилизации параметров колебаний. Стационарный режим работы длится с момента стабилизации параметров колебаний и до выключения генератора (рисунок 4).

Рисунок 4 - Режимы работы автогенератора

 

Условия самовозбуждения автогенератора

Чтобы определить условия самовозбуждения автогенератора необходимо рассмотреть его уравнение.

Коэффициент передачи автогенератора определяется выражением

Кп=Кус?Кос                                                                                   (2)

где  Кп — комплексное значение коэффициента передачи автогенератора;

Кус — комплексное значение коэффициент усиления усилителя;

        Кос — комплексное значение коэффициента обратной связи.

 

Если разомкнуть цепь обратной связи, то выражение для коэффициента усиления будет иметь вид

Кус=Umвых/Umвх=Кус e jjус                                                           (3)

где  Umвх — комплексная амплитуда входного напряжения усилителя;

Umвых — комплексная амплитуда выходного напряжения усилителя;

Кус — модуль коэффициента усиления:

jус — аргумент модуля коэффициента усиления.

Модуль коэффициента усиления равен

Кус=Umвых/Umвх                                                                            (4)

jус учитывает сдвиг фаз между входным и выходным напряжениями усилителя. Как следует из рисунка 3, усилитель включает в себя усилительный элемент и избирательную цепь. Предположим, что в качестве избирательной системы используется параллельный колебательный контур с сопротивлением Rрез. Тогда

Umвых=Im1?Rрез                                                                              (5)

где  Im1 ? амплитуда первой гармоники выходного тока усилительного элемента.

Между Im1 и Umвх существует взаимосвязь, определяемая выражением

Im1=Sср?Umвх                                                                                 (6)

где  Sср — средняя крутизна вольт-амперной характеристики усилительного элемента

Подставляя значение Im1 из (6) в (5) получаем

Umвых=Sср?Umвх?Rрез                                                                     (7)

Тогда модуль коэффициента усиления усилителя, учитывая (4) и (7) будет равен

Кус=Umвых/Umвх= Sср?Umвх?Rрез/ Umвх= Sср?Rрез                      (8)

Учитывая, что jус будет равно

jус=jуэ+jиц                                                                                     (9)

где jуэ — фазовый сдвиг, вносимый усилительным элементом;

jиц — фазовый сдвиг, вносимый избирательной цепью.

Учитывая выражения (3), (8) и (9) коэффициент усиления усилителя будет равен

Кус= Sср?Rрез e j(jуэ+jиц)                                                                (10)

Коэффициент передачи цепи обратной связи равен

Кос= Umвх/Umвых= Кос e jjос                                                         (11)

где Кос — модуль коэффициента передачи цепи обратной связи;

jос — аргумент модуля коэффициента передачи цепи обратной связи.

jос учитывает сдвиг фаз между входным и выходным напряжениями цепи обратной связи.

Таким образом, исходя из выражений (2), (10) и (11), можно записать коэффициент передачи автогенератора в стационарном режиме (с постоянными параметрами)  при генерировании синусоидальных колебаний

Кп=Кус?Кос= Sср?Rрез? Кос e j(jуэ+jиц+jос)=1                                (12)

Выражение (12) является уравнением автогенератора. Согласно данному уравнению коэффициент передачи автогенератора в стационарном режиме должен быть равен единице.

Уравнение автогенератора выражает условия самовозбуждения автогенератора.

1. Условие баланса амплитуд

Кп= Sср?Rрез? Кос=1                                                                     (13)

Коэффициент передачи по замкнутому кольцу генератора должен быть  равен единице. Т. е. вся энергия, затрачиваемая на пассивных элементах генератора и нагрузки должна полностью компенсироваться энергией пополнения усилительного элемента.

Условие баланса амплитуд определяет стационарную амплитуду колебаний.

2. Условие баланса фаз

jус=jуэ+jиц+jос=0 или k2p, где k=1, 2, 3, …                              (14)

Суммарный сдвиг фаз в замкнутом кольце автогенератора должен быть равен нулю или кратен 2p (360°). Т. е. энергия пополнения усилительного элемента должна подаваться в фазе с уже существующими колебаниями. Для выполнения этого условия цепь обратной связи автогенератора должна быть положительной. Т. к. в большинстве автогенераторов условие баланса фаз выполняется лишь на одной частоте, то это условие определяет частоту генерации.

Режимы самовозбуждения автогенератора

В зависимости от значений постоянных питающих напряжений подводимых к электродам усилительного элемента, и от коэффициента Кос возможны два режима самовозбуждения: мягкий и жесткий.

При мягком режиме самовозбуждения положение рабочей точки (А) задается на линейном участке вольт-амперной характеристики усилительного элемента (рисунок 5). В этом случае обеспечивается начальный режим работы усилительного элемента без отсечки выходного тока. При этом режиме самовозбуждение возникает даже при незначительных изменениях входного напряжения, которые всегда наблюдаются из-за флуктуаций носителей зарядов. Таким образом, колебания на выходе усилительного элемента возникают сразу, даже при незначительных изменениях входного напряжения, что является достоинством данного режима самовозбуждения.  Амплитуда колебаний на выходе генератора возрастает плавно. В стационарном режиме усилительный элемент может работать без отсечки или с отсечкой выходного тока, причем во втором случае угол отсечки выходного тока Q (половина длительности импульса выходного тока) больше 90°. Отсутствие отсечки или большой угол отсечки приводят к снижению коэффициента полезного действия (КПД) генератора, что является недостатком этого режима.

Рисунок 5 - Диаграммы, поясняющие мягкий режим самовозбуждения

При жестком режиме самовозбуждения положение рабочей точки задается за пределами вольт-амперной характеристики усилительного элемента (рисунок 6). Это приводит к тому, что усилительный элемент постоянно работает в режиме отсечки выходного тока, вследствие этого колебания на выходе элемента появляются лишь при превышении амплитудой входного напряжения u(t) определенного значения Uн. При превышении этого значения (u(t)?Uн) усилительный элемент отпирается, и на его выходе появляются колебания. Причем амплитуда этих колебаний нарастает быстро. Необходимость наличия определенного напряжения на входе усилительного элемента для появления колебаний на его выходе является недостатком жесткого режима самовозбуждения.

В данном режиме самовозбуждения угол отсечки выходного тока меньше 90°. Наличие малого угла отсечки увеличивает КПД генератора, что является достоинством этого режима.

Рисунок 6 - Диаграммы, поясняющие жёсткий режим самовозбуждения

Как видно мягкий режим самовозбуждения обладает теми достоинствами, которыми не обладает жесткий режим, а жесткий режим обладает теми достоинствами, которыми не обладает мягкий режим. Поэтому на практике в некоторых типах генераторов (в частности в LC-генераторах) используют оба режима: при включении генератора и во время переходного режима генератор работает в мягком режиме самовозбуждения, а при переходе в стационарный режим работы генератор переводится в жесткий режим самовозбуждения.

 

Характеристики автогенератора

Колебательная характеристика представляет собой зависимость амплитуды первой гармоники выходного тока усилительного элемента Im1 от амплитуды входного напряжения Umвх при неизменном напряжении смещения U0 и разомкнутой цепи обратной связи.

Эти характеристики имеют нелинейный характер, т. к. усилительный элемент является нелинейным, и зависят от режима самовозбуждения генератора. На рисунке 7, а представлена колебательная характеристика генератора в мягком режиме самовозбуждения, а на рисунке 7, б ? в жестком режиме самовозбуждения.

Рисунок 7 - Колебательные характеристики автогенератора

Линии обратной связи представляют собой зависимость выходного напряжения цепи обратной связи Umвых от амплитуды первой гармоники входного тока Im1.

Поскольку выходное напряжение цепи обратной связи является входным напряжением усилительного элемента, а входной ток цепи обратной связи является выходным током усилителя, то линии обратной связи удобнее представить относительно усилителя как зависимость входного напряжения усилительного элемента от амплитуды первой гармоники выходного тока (рисунок 8).

Рисунок 8 - Линии обратной связи

Линии обратной связи выражают линейную зависимость, т. к. цепь обратной связи является линейной цепью. Наклон линий зависит от коэффициента обратной связи Кос. Чем больше Кос, т. е. чем сильнее обратная связь, тем меньше угол наклона относительно оси Umвх, например, на рисунке 8: Кос1<Кос2<Кос3.

 

Определение стационарной амплитуды колебаний

Из пункта 1.6 следует, что в автогенераторе одновременно существуют линейная (линии обратной связи) и нелинейная (колебательная характеристика) зависимости. В стационарном режиме работы автогенератора амплитуда напряжения Umвх и соответствующая ему амплитуда тока Im1 усилительного элемента должны одновременно удовлетворять этим двум зависимостям. Это возможно только в точках пересечения колебательной характеристики с линией обратной связи. Рассмотрим процесс определения стационарной амплитуды колебаний в различных режимах самовозбуждения.

Мягкий режим самовозбуждения.

Для анализа процессов происходящих в автогенераторе построим обе его характеристики в одной оси координат и в одном масштабе (рисунок 9).

Рисунок 9 - Определение стационарной амплитуды колебаний в мягком режиме

Рисунок 9 - Определение стационарной амплитуды колебаний в мягком режиме

На рисунке представлены две линии обратной связи при различных коэффициентах обратной связи Кос1 и Кос2 причем Кос1<Кос2. При Кос1 колебания отсутствуют, т. к. колебательная характеристика и линия обратной связи имеют одну общую точку 0, а значит Umвх=0 и Im1=0. При Кос2 колебательная характеристика и линия обратной связи имеет две общие точки 0 и В. Поскольку, как отмечалось выше, в точке 0 колебания не возможны, то устойчивые колебания возможны только в точке В при напряжении равном UmвхВ и соответствующем ему током Im. Точка В является точкой устойчивого равновесия и соответствует стационарному режиму работы генератора. В точке устойчивого равновесия наблюдается баланс энергии пополнения усилительного элемента и энергии потерь. К этой точке генератор приходит в процессе самовозбуждения. В результате воздействия на генератор различных дестабилизирующих факторов он может выйти из состояния устойчивого равновесия, но амплитуда колебаний будет стремится вернутся к точке устойчивого равновесия. Рассмотрим процессы, происходящие в автогенераторе в этом случае.

Предположим, что напряжение на входе усилительного элемента уменьшилось до значения UmвхС. Это напряжение вызовет в выходной цепи генератора ток Im1C. Этот ток благодаря обратной связи увеличит напряжение на входе элемента до UmвхD, а это, в свою очередь, приведет к увеличению тока до Im1D. Этот ток приведет к увеличению напряжения и т. д. Это будет происходить до тех пор, пока амплитуда колебаний не достигнет значений точки В. Если же амплитуда колебаний, под воздействием дестабилизирующих факторов, увеличится до значения UmвхЕ, то произойдет обратный процесс, т. е. вызванный этим напряжением ток Im1E, благодаря обратной связи, приведет к уменьшению напряжения Umвх и т. д., до тех пор, пока амплитуда колебаний опять не вернется к значению точки В.

Жесткий режим самовозбуждения.

В данном режиме колебательная характеристика и линия обратной связи имеет три общие точки 0, А и В (рисунок 10).

Рисунок 10 Определение стационарной амплитуды колебаний в жестком режиме

В точке 0 колебания существовать не могут. Проанализируем точку А. Уменьшение амплитуды колебаний на входе усилительного элемента до UmвхС, вызовет ток в выходной цепи Im, который в свою очередь приведет к уменьшению напряжения Umвх, это напряжение приведет к уменьшению тока Im1 и т. д. до тех пор, пока колебания не затухнут. Если напряжение на входе усилительного элемента увеличится до значения UmвхD то амплитуда колебаний будет увеличиваться до значения точки В. Таким образом, точка А является точкой неустойчивого равновесия, в этой точке могут существовать колебания, но при изменения их амплитуды они либо затухают либо их амплитуда увеличивается. Если произвести анализ точки В, то она окажется точкой устойчивого равновесия.

Запись опубликована в рубрике Теория с метками , . Добавьте в закладки постоянную ссылку.

2 комментария: Принципы построения автогенераторов

  1. Сашка говорит:

    В подписи к рисунку 6 исправьте «мягкий» на «жёсткий»

Добавить комментарий